Гипотеза сплошности среды. Основные понятия жидкого кон-тинуума

💖 Нравится? Поделись с друзьями ссылкой

В гидромеханике рассматриваются макроскопические движения жидкостей и газов, а также силовое взаимодействие этих сред с твердыми телами. При этом, как правило, размеры рассматриваемых объемов жидкостей, газов и твердых тел оказываются несопоставимо большими по сравнению с размерами молекул и межмолекулярными расстояниями. Это естественно, поскольку межмолекулярные расстояния в жидкостях составляют всего см.

Указанные обстоятельства позволяют ввести гипотезу сплошности изучаемой среды и заменить реальные дискретные объекты упрощенными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему. Такая идеализация упрощает реальную дискретную систему и позволяет использовать для ее описания хорошо разработанный математический аппарат исчисления бесконечно малых и теорию непрерывных функций.

Параметры, характеризующие термодинамическое состояние, покой или. движение среды, считаются при этом непрерывно изменяющимися по всему объему, занятому средой, кроме, быть может, отдельных точек, линий или поверхностей, где могут существовать разрывы.

Теоретические результаты, подученные для гипотетической сплошной среды, тем лучше совпадут с результатами наблюдений, чем полнее и точнее учтены в ней свойства реальных жидкостей и газов. К сожалению, идеализацию среды во многих случаях не удается ограничить только допущением ее сплошности. Сложность изучаемых явлений заставляет отказываться от учета и некоторых других свойств реальных сред. В зависимости от тех свойств, которые приписываются гипотетической сплошной среде, получают различные ее модели.

Гипотеза сплошности среды означает, что всякий малый элемент объема жидкости считается все-таки настолько большим, что содержит еще очень большое число молекул. Соответственно этому, когда мы будем говорить о бесконечно малых элементах объема, то всегда при этом будем подразумевать «физически» бесконечно малый объем, т. е. объем достаточно малый по сравнению с объемом жидкости, но большой по сравнению с молекулярными расстояниями.

Согласно гипотезе сплошности масса среды распределена в объеме непрерывно и в общем неравномерно. Основной динамической характеристикой среды является плотность распределения массы по объему или просто плотность среды.

Плотность среды в произвольной точке А определяется соотношением

где – масса, заключенная в малом объеме , включающем точку А ; предел берется при стягивании объема к этой точке.

Наряду с плотностью в рассмотрение вводится понятие удельного объема , который представляет собой объем, содержащий единицу массы:

Плотность среды может изменятся от точки к точке и в данной точке со временем, т. е.

(11)

Аналогично для давления имеем . Как известно, по двум термодинамическим величинам с помощью уравнения состояния вещества могут быть определены все термодинамические величины. Таким образом, задание пяти величин: трех компонентов скорости , давления и плотности полностью определяет состояние движущейся жидкости. Подчеркнем, что есть скорость жидкости в каждой данной точке х, у, z пространства в момент времени t .

Однако эта функциональная связь не является непосредственной, так как плотность жидкостей и газов определяется фактически значениями термодинамических параметров состояния и Т), которые при движении среды зависят от координат (х, у, z) и времени (t ).

Математическое описание движения жидкой среды общими дифференциальными уравнениями, учитывающими все физические свойства, присущие этой среде, оказывается весьма сложной задачей. Если даже ограничится учетом только текучести, вязкости и сжимаемости, то и тогда уравнения движения, выражающие основные законы механики, оказываются настолько сложными, что пока не удалось разработать общих аналитических методов их решения. Применение численных методов интегрирования таких уравнений на базе современных ЭВМ также связано со значительными трудностями. В гидромеханике поэтому широко используют различные упрощенные модели среды и отдельных явлений.

Под моделью реальной среды понимают такую гипотетическую среду, в которой учтены только некоторые из физических свойств, существенные для определенного круга явлений и технических задач. Другие малосущественные свойства среды в модели игнорируются.

Одной из основных в гидромеханике является модель несжимаемой идеальной (или невязкой) жидкости. Так называется гипотетическая сплошная среда, обладающая текучестью, лишенная вязкости и полностью несжимаемая. Эта модель является объектом исследования в разделе гидромеханики «Теория идеальной несжимаемой жидкости». Игнорирование свойств вязкости и сжимаемости сильно упрощает математическое описание движения жидкости и позволяет получить многие решения в конечном замкнутом виде. Несмотря на значительную степень идеализации среды, теория несжимаемой невязкой жидкости дает ряд не только качественно, но и количественно подтверждаемых опытом результатов, полезных для практических приложений. Но не менее существенное значение этой теории состоит в том, что она является базой для других моделей, более полно учитывающих свойства реальных сред. Следует, однако, подчеркнуть, что пренебрежение вязкостью является весьма сильной степенью идеализации, поэтому теория идеальной несжимаемой жидкости может приводит к результатам, резко расходящимся с опытом.

Более полно свойства реальной жидкости учитываются в модели вязкой несжимаемой жидкости, которая представляет собой среду, обладающую текучестью и вязкостью, но абсолютно несжимаемую. Теория вязкой несжимаемой жидкости лишь в ограниченном числе случаев с простейшими граничными условиями позволяет получить точные решения полных уравнений движения. Наибольшее значение в этой теории имеют приближенные уравнения и их решения. Такие уравнения получают путем отбрасывания в полных уравнениях движения тех членов, которые мало влияют на соответствие теоретических решений опыту. Решения приближенных уравнений могут быть как точными, так и приближенными.

Передачу энергии в гидравлических системах обеспечивают рабочие жидкости, поэтому чтобы эффективно их применять, надо знать какими свойствами они обладают.

Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между газами и твердыми телами. Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул. Вгазах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.

Молекулы жидкости находятся в непрерывном хаотическом тепловом движении, отличающемся от хаотического теплового движения газов и твердых тел. В жидкостях это движение осуществляется в виде колебаний (10 13 колебаний в секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел состоит в колебаниях относительно стабильных центров. Тепловое движение молекул газа выглядит, как непрерывные скачкообразные перемены мест.

При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления – к свойствам твердых тел.

Термин «жидкость» применяется для обозначения и собственно жидкости, которую рассматривают как несжимаемую или мало сжимаемую среду, и газа, который можно рассматривать как «сжимаемую жидкость».

Гипотеза сплошности

Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести , основанное на явлении диффузии . Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду –континуум , который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны.

По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность.

Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости » или «элементарный объём жидкости ». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см , то в объеме будет находиться 3,3∙10 13 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся или покоящейся жидкостью.

Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики.

Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонен­тов, которые могут образовывать с жидкостью различные смеси как гомогенные (раство­ры) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основ­ных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.

Идеальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемо­стью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процес­сов теплопроводности и теплопереноса.

Реальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.

Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.

Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.

Гипотеза сплошности - представление материала как сплошной среды с определенной плотностью р = Vm ΔV → 0 (Δm/ΔV) = dm/dV при ΔV → 0 . сплошности позволяет частиц металла описывать непрерывными функциями с использованием аппарата дифференциального и интегрального исчислений.
Смотри также:
-
-
-
-
-
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "гипотеза сплошности" в других словарях:

    гипотеза сплошности - Представление материала как сплошной среды с определенной плотностью р. Г. с. позволяет движение частиц металла описывать непрерывными функциями с использованием аппарата дифференц. и интегрального исчислений. … … Справочник технического переводчика

    Предположение, что при любом элементарном объеме материал обладает изотропными реологическими и механическими свойствами. Гипотеза изотропности позволяет существенно упростить математический аппарат прикладной теории… …

    Предположение, что в результате пластической деформации металлов их объем остается постоянным. Гипотеза несжимаемости позволяет не принимать во внимание упругую деформацию при развитой пластической деформации.… … Энциклопедический словарь по металлургии

    Условно выбранные в теле до деформации плоские сечения остаются плоскими и при деформации. Гипотеза плоских сечений используется для упрощения инженерных расчетов, например распределении контактных напряжений при… … Энциклопедический словарь по металлургии

    Устанавливает в теории пластичности связь между инвариантными харрактеристиками напряженных и деформированных состояний; например, между интенсивностью касательных напряжений Т и интенсивностью деформаций сдвига Г: Т … Энциклопедический словарь по металлургии

    Постулирование подобия девиаторов напряжений и девиаторов приращений деформаций (скоростей деформаций) в теории течения и подобия девиаторов напряжений и деформаций в деформационных теориях; Смотри также:… … Энциклопедический словарь по металлургии

    - : Смотри также: гипотеза сплошности гипотеза плоских сечений гипотеза изотропности гипотеза единой кривой … Энциклопедический словарь по металлургии

    Гипотеза в науках о природе - (ύπόθεσις все полагаемое в основание, предположение, основное положение, принцип) предположение, делаемое нами для объяснения явлений. К таким предположениям мы прибегаем, когда сложность условий явления не допускает непосредственно… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление материалов - Внешние силовые линии увеличиваются около отверстия, в общем случае концентрации напряжений Сопротивление материалов (в обиходе сопромат) часть механики деформируемого твёрдого тела, которая рассматривает методы инженерных расчётов … Википедия

    Континуум (в физике) - У этого термина существуют и другие значения, см. Континуум. Континуум в физике обозначает некоторую сплошную среду, в которой исследуются процессы/поведение этой среды при различных внешних условиях. Вводится на основании гипотезы сплошности, в… … Википедия

Гипотеза сплошности.

«Рассматривать жидкие тела как совокупность отдельных молекул (в каждой отдельно) практически неподвижно, поэтому при изучении жидкости и газов (и вообще деформации тел) вводятся допущения, что эти тела заполняют пространство непрерывно, т.е. характеризуют определенными значениями параметра (плотность, температура, вязкость и тд.). при таком рассмотрении жидкое тело называют сплошной средой или континиумом. Жидкости. Все вещества в природе имеют молекулярное строение. По характеру молекулярных движений, а также по численным значениям межмолекулярных сил жидкости занимают промежуточное положение между газами и твердыми телами. Свойства жидкостей при высоких температурах и низких давлениях ближе к составам газов, а при низких температурах и высоких давлениях - к свойствам твердых тел. В газах расстояния между молекулами больше, а межмолекулярные силы меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся в непрерывном хаотичном тепловом движении, отличающемся от хаотичного теплового движения газов и твердых тел: в жидкостях это движение осуществляется в виде колебаний (10п колебаний п секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел - колебания относительно стабильных центров. Тепловое движение молекул газа - непрерывные скачкообразные перемены мест.
Диффузия молекул жидкостей и газов обусловливает их общее свойство - текучесть. Поэтому термин «жидкость» применяют для обозначения и собственно жидкости (несжимаемая или весьма мало сжимаемая, капельная жидкость), и газа (сжимаемая жидкость). В гидравлике рассматриваются равновесие и движение капельных жидкостей.
Гипотеза сплошности. Жидкость рассматривается как деформируемая система материальных частиц, непрерывно заполняющих пространство, в котором оно движется.
Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3 1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.
При таком предположении жидкость в целом рассматривается как континуум - сплошная среда, непрерывно заполняющая пространство, т. е. принимается, что в жидкости нет пустот или разрывов, все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим параметрам. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.
Правомерность применения модели жидкости - сплошная среда подтверждена всей практикой гидравлики.
Гипотеза сплошности нужна для того, чтобы можно было применить дифференциальное исчисление, определенные формулы в математике, которые мы проходим. Если будем рассматривать жидкости как несплошное тело, то нужно применять другую «математику», которая находиться только в стадии развития.

Силы, действующие на выделенный объем сплошной среды (жидкости)

Рассмотрим не­который объем жидкости (содержащийся в сосуде или объем, мыс­ленно выделенный из общей массы жидкости). Приложенные к нему силы можно разделить на массовые и поверхностные.

Массовые силы обусловлены действующим на жидкость силовым полем, они приложены к каждой частице жидкости и пропорцио­нальны их массе, примером таких сил являются силы тяжести, силы инерции переносного движения.

Поверхностные силы обусловлены взаимодействием рассматри­ваемого объема с окружающими его телами; если жидкость налита в сосуд - это силы реакции стенок сосуда; если рассматривается объ­ем, мысленно выделенный из общей массы жидкости - это силы, действующие на него со стороны «отброшенной» жидкости. Во всех случаях эти силы распределены по поверхности выделенного объема и определяются площадью поверхности, на которую они действуют.

Напряжения в сплошной среде. Нормальные и касательные напряжения.

Определим напряжение, возникающее в жидкости под действием массовых сил. Возьмем элементарный объем ∆ V, в котором заключе­на масса жидкости ∆m и приложена массовая сила ∆. F.

Отношение этой силы к массе элементарного объема называется средним напряжением массовой силы и обозначается через а ср, та­ким образом, а ср=│ ∆F │ / ∆m

Если объем элементарной частицы и, следовательно, ее масса стремится к нулю, то получим напряжение массовых сил в точке lim │ ∆F │ / ∆m = d| F | / dm = а. (1.1) при ∆ V → 0 .

Напряжение массовых сил совпадает с ускорением (как следует из второго закона Ньютона), вызываемым этой силой, и имеет его размерность.

Аналогичным образом можно оп­ределить напряжение поверхност­ных сил. Эти силы пропорциональны размеру площадки, на которую они действуют, и непрерывно распреде­лены по ее поверхности; их можно разложить на составляющие: нор­мальную силу сжатия и касательную силу (силу трения).

Поверхностные силы сжатия име­ют место как при равновесии (покое) жидкости, так и при ее движении, а поверхностные силы трения в обычных жидкостях возникают только при их движении.

Пусть на элементарную площадку ∆ω действует поверхностная сила R, направленная под углом а к нормали к площадке (рис. 1.1).

Силу R можно разложить, как указывалось, на нормальную со­ставляющую ∆Р, направленную вдоль нормали к площадке, и на ка­сательную T, лежащую в плоскости касательной к поверхности в точке приложения силы R..

Предел отношения элементарной силы (силы трения) ∆T к пло­щадке∆ω или отношение конечной касательной силы Т к площади w называется касательным напряжением.

т = lim | TI ∆ω| или τ = T/ ω (1.2) ∆ω→0

Нормальные напряжения в жидкости определяются как предел отношения силы давления ∆Р к площадке ∆ω: р = lim | TI ∆ω| ∆ω→0

Нормальные напряжения р называют давлением.

Сопротивление растяжению внутри капельных жидкостей по мо­лекулярной теории может быть весьма значительным. При опытах с тщательно очищенной и дегазированной водой в ней были получены кратковременные напряжения растяжения до 28*10 3 кН. Однако жидкости, содержащие взвешенные твердые частицы и мельчайшие пузырьки газов, не выдерживают даже незначительных напряжений растяжения. Поэтому в дальнейшем будем считать, что напряжения растяжения в капельных жидкостях практически невозможны и в ней могут действовать только сжимающие усилия, вызывающие нор­мальное напряжение.

Понятие об аэродинамических трубах и гидролотках

Принцип обратимости движения и моделирования в аэродинамике

Гипотеза сплошности среды

Влажность

Влажностью называется физический параметр, который определяет массовое коли-чество водяных паров находящихся в единице объема воздуха.

Абсолютная влажность – это физический параметр, который определяет массу во-дяных паров, содержащихся в 1 см 3 объема воздуха.

Относительная влажность – это физический параметр, который определяет отно-шение абсолютной влажности к массе водяного пара, которая необходима для насыщения 1 см 3 воздуха при заданной температуре.

ЛЕКЦИЯ 1.4 ГИПОТЕЗА СПЛОШНОСТИ СРЕДЫ.

ПРИНЦИПЫ ОБРАТИМОСТИ ДВИЖЕНИЯ И МОДЕЛИРОВАНИЯ В АЭРОДИНАМИКЕ

Схему, которая заменяет дискретную структуру воздуха сплошной средой, впервые предложил известный ученый Л. Эйлер в 1753 г.

Она получила название гипотезы сплошности среды . Применение ее значительно облегчает исследования законов движения воздуха и газов. Как известно, при нормальных условиях в воздуха помещается молекул.

Критерием оценки сплошности среды является число Кнудсена:

Длинна свободного пробега молекул

L – характерный размер течения (длина обтекаемого тела).

Для характеристики степени разреженности среды в пограничном слое используется

отношение длины свободного пробега молекул к толщинй пограничного слоя

Толщина пограничного слоя зависит от характера течения (числа Маха ) и числа Re. В зависимости от числа Кнудсена(течение газа можно разделить на три основ-ные области:

1 Если 0,01, то средняя длина пробега молекул меньше 1 % от толщины пограничного слоя, в этом случае течение считается сплошным. В этом случае газодинамические параметры воздуха ( являются непрерывными величи-нами, то есть имеет место область обычной газовой динамики.

2 Если 1 , то длинна свободного пробега молекул мала по сравне-нию с размером обтекаемого тела, но соизмерима с толщиной пограничного слоя. В этом случае течение называется течением со скольжением .

3 Если 1 , то длинна свободного пробега больше или соизмеримы по вели-чине с толщиной пограничного слоя. В этом случае имеется область свободно молекулярных течений . В этой области элементарные частицы не взаимодейст-вуют между собой и пограничного слоя фактически нет.

С увеличением высоты уменьшается количество молекул в исследуемом объеме га-за, а это приводит к уменьшению силового взаимодействия частиц воздуха с обтекаемым телом. Силы взаимодействия между потоком и телом представляют собой суммарный им-пульс силы ударов частиц воздуха о поверхность обтекаемого тела.



На высотах Н 80 км в расчетах учитывается дискретная структура воздуха.

Рис 1.4.1 Схема гипотезы сплошности среды

Необходимым условием для дифференциального исчисления параметров и аэроди-намических сил при взаимодействии воздуха с телом, является непрерывность газодина-мических параметров ().

Рассказать друзьям